
1 / 27

Recent progress in understanding
hadronization in semi-inclusive observables

Nobuo Sato
University of Connecticut
Synergies of pp and pA Collisions with an Electron-Ion Collider
BNL, 2017

Jefferson Lab TMD LDRD



Outline

2 / 27

Basic overview of SIDIS
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Semi inclusive deep inelastic scattering (SIDIS)

4 / 27

identified hadron h

pµh = (Eh, ~ph)

incoming lepton
lµ = (E, 0, 0, E)

target
Pµ = (M,~0)

outgoing lepton
l′µ = (E′,~l′)

exchanged photon
q = l − l′

Breit frame



Semi inclusive deep inelastic scattering (SIDIS)

4 / 27

identified hadron h

pµh = (Eh, ~ph)

incoming lepton
lµ = (E, 0, 0, E)

target
Pµ = (M,~0)

outgoing lepton
l′µ = (E′,~l′)

exchanged photon
q = l − l′

Breit frame

Key question :
How is phT generated at
short distances?
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Combining large and small phT approximation

7 / 27

=

+ − double
counting

+ O(m2/Q2)



Combining large and small phT approximation
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Notation

Γ ≡ dσ

dxdQ2dzdqT

The W+Y construction

Γ = Γ
= TTMDΓ + [Γ−TTMDΓ]
= TTMDΓ︸ ︷︷ ︸

W

+ Tcoll [Γ−TTMDΓ]︸ ︷︷ ︸
Y

+O(m2/Q2)Γ

More notation

TcollΓ ≡ FO
TcollTTMDΓ ≡ ASY



Recent progress
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Some recent progress: Collins, et al. (PRD.94.0340)
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FO is a bad approximation for small qT but its a valid
approximation if is integrated over all qT

ASY gives a divergent integral over qT as qT →∞

The integral of W over all qT is zero

In the original CSS, W+Y cannot be used to construct a qT
integrated cross section.

To solve this, an extended version of the original CSS W+Y
was proposed



Still some issues...
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Need order α2
S or beyond?

Soft gluon resummation?
Subleading power corrections?

The unpolarized SIDIS cross
sections needs to be ready
to interpret upcoming TMD
data from JLab 12



SIDIS kinematics analysis Boglione et al. (PLB766,245)

12 / 27

Can we apply factorization
theorems in SIDIS
measurements?

Factorization demands that

ph · kf = O(m2)
ph · ki = O(Q2)

Define a collinearity parameter

R = (ph · kf )
(ph · ki)

= O(m2/Q2)
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Regions in SIDIS
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ph⊥

y

Current fragmentation
TMD factorization

Current fragmentation
Collinear factorization

Soft region
????

Target region
Fracture functions

Hadrons can also be produced in the mid rapidity region → see
discussion by J. Collins arXiv:1610.09994
String type effects are potentially important
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String effects: PLB261 (1991) (OPAL Collaboration)
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3 Jets events: QQ̄ and gluon jets. Jets are projected into a plane
ψ: angle of a given particle relative to the quark jet with the highest
energy
ψA: angle between highest energetic jet and gluon jet
ψC : angle between quark jets
Only events with ψA = ψC are kept

Particle flow asymmetry is observed → evidence of string effects
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JLab TMD LDRD
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Jefferson Lab TMD LDRD
Main objectives:

- Urgent requirement: MCEG for TMD physics
- Language dictionary between in NP and HEP
- Improve the theoretical framework for TMDs

Why?
- MCEG is a useful theory tool to describe exclusive final

states
- Is a numerical implementation of QCD evolution and

nonperturbative physics
- Needed for high-presicion nonperturbative physics

What do we need?
- Put a bunch of physicists in a room
- Use Pythia8+DIRE as a starting point
- Use QCD factorization theorems as a guidance
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Technical details
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Simulate e+e− at Q = 30, 91.2, 1000 GeV flavor by flavor

Fit π and K FFs using pQCD @ NLO

1
σTOT

dσh
±
q

dz
(z,Q2) = 2

σTOT

[
Cq ⊗Dq+(z,Q2) + Cg ⊗Dg(z,Q2)

]

ZMVS with input Q0 = 11GeV

Parametrization: Dq+(z) = Nzα(1− z)β(1 + c1z + c2z
2 + ...)



Pythia8 vs. collinear factorization (preliminary)
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Pythia8+DIRE FFs (preliminary)
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Pythia8+DIRE FFs (preliminary)

22 / 27

0.2 0.4 0.6 0.8

10−6

10−4

10−2

100

zD
h q
(z

)

d+π+

K+

0.2 0.4 0.6 0.8

u+

0.2 0.4 0.6 0.8

s+

0.2 0.4 0.6 0.8 z

10−6

10−4

10−2

100

zD
h q
(z

)

c+

0.2 0.4 0.6 0.8 z

b+

Q = 11 GeV

Q = 30 GeV

Q = 91.2 GeV

Q = 103 GeV

0.2 0.4 0.6 0.8 z

g



Pythia8+DIRE π FFs and other global analyses
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Pythia8+DIRE K FFs and other global analyses
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Pythia8+DIRE vs global e+e− → π +X
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Pythia8+DIRE vs global e+e− → K +X
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Summary and outlook
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Recent progress
Improvements on the CSS formalism to extend the range of
validity to all qT

α2
S corrections are on the way

New analysis of SIDIS kinematics helps to understand
applicability of TMD formalism

Factorization and MCEG

JLab founded LDRD to study interplay between factorization
methods and MCEG
New studies of FFs from pythia
Does collinear factorization work in the combined
SIDIS+e+e− ?
Can we see the role of string effects?
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